
MDN

Web Developer

Needs Assessment

2020

Acknowledgements

The second iteration of the report would not be possible without
many contributions. The core team responsible for executing the
survey, analyzing the results, and publishing the report are:

• Chris Mills and Nancy Hang at Mozilla
• Alex Klapheke, Allison McKeever, and Jon Godin at Pinpoint

The MDN Product Advisory Board (PAB) was a major contributor to
the project and consists of the following companies:

Bocoup
Special acknowledgments for:

• Boaz Sender
• Jory Burson
• Sheila Moussavi
• Simon Pieters

Google
A special thank you to Google for their financial sponsorship of this
study. Special acknowledgments for:

• Helen Harris
• Joe Medley
• Philip Jägenstedt
• Robert Nyman

Microsoft
A special thank you to Microsoft for their financial sponsorship of
this study. Special acknowledgments for:

• Kyle Pflug
• Reeza Ali

Mozilla
Special acknowledgments for:

• James Graham
• Maja Frydrychowicz

Samsung
Special acknowledgment for:

• Daniel Appelquist

W3C
Special acknowledgment for:

• Dominique Hazael-Massieux

A special thanks to Kadir Topal and Dietrich Ayala who originally
conceived of this project in 2018.

Introduction

Study Responses

Overall Satisfaction With the Web

Needs Assessment

What’s Missing From the Web

Technologies

Conclusion

Methodology

Table of Contents

4

6

13

16

31

38

53

55

Introduction

MDN Web Developer Needs Assessment / 4

Welcome to the second edition of the MDN Web Developers Needs
Assessment (DNA) — a global, annual study of developer needs on
the web. MDN Web DNA aspires to be the voice of developers and
designers working on the web.

On single-vendor platforms, only one organization has to research
developer needs and decide how to address them in the future. It’s
not that straightforward on the web, where multiple organizations
need to be involved in feature decisions, from browser vendors to
standards bodies and industry. As a result, change can be slow to
come, which means that pain points may take a long time to address.

Like the community, this assessment is not owned by a single orga-
nization. It is not tailored to fit the priorities of participating brows-
er vendors, or to mirror other existing assessments. These findings
are published under the umbrella of the MDN Product Advisory
Board, and the survey used for data collection was designed with
input from more than 30 stakeholders representing board member
organizations including browser vendors, the W3C, and industry.

This report would not exist without the input of our respondents
from 2019 and 2020 who, this year, took an average of twenty-one
minutes to complete the survey. Between last year and this year, the
community has contributed more than 10,000 hours to provide an
understanding of the pain points, wants, and needs of people work-
ing to build the web.

The input provided by survey participants is already influencing
how browser vendors prioritize feature development to address the
needs of developers on the web. By producing this report annually, it
will be possible to track changing needs and pain points over time,
enabling all stakeholders to see the impact of their efforts on the

Introduction

2019 vs 2020
Between our first iteration of the MDN Web DNA and the second
iteration in 2020, we changed our approach to data analysis. In the
first iteration, the team relied on reporting features available in
our survey platform. This year, the team hired an experienced data
scientist to conduct analysis and employ data science best practices.
You can read more about our approach to analysis in the methodolo-
gy section.

Another difference between the first iteration and second iteration
is the response rate to the survey. This year, there were fewer par-
ticipants and all we can do is speculate as to why. We suspect that
one reason we saw a drop in participation is because we added more
new questions this year than we removed, which increased the mean
time it took to complete the survey by six minutes, up to 21 minutes
from fifteen minutes. Another reason might be that 2020 is an un-
precedented year with the global, coronavirus pandemic. How much
that affected our response rates, we’ll never know.

In 2020, we increased our efforts to recruit more diverse partic-
ipants by reaching out to different organizations and nonprofits
whose missions are to amplify the voices of and provide resources
to marginalized communities of web developers. Even with these
recruiting efforts, the percentage of respondents who identify as
women or those who chose not to identify their genders was down
between this year and last.

Because the nature of this study is an open call for participants, year
over year comparisons are not apples to apples. However, there were
no significant changes in the overall makeup of participants.

Throughout the report we specify where there were changes in the
survey questions.

Survey Responses

MDN Web Developer Needs Assessment / 6

Target
Our target audience for the second iteration of this study was the
same as the first, people who spend at least some of their time writ-
ing code for the Web. Inherent in this target audience is a selection
bias of those who are working on the Web today. The voice of those
who have abandoned the platform, whether because of dissatisfac-
tion or other reasons, is left to future iterations of this study. Simi-
larly, those who cannot or do not choose the Web platform are not a
part of this study.

Recruited
When the survey launched, it was announced on MDN as well as
through tweets and other social network posts of the MDN commu-
nity. The initial responses are the most diverse as participants were
drawn in through the various social network promotions. As time
progressed, the banner on MDN remained and was the prominent
recruiting vehicle. The active publicity on MDN created another
selection bias towards those who use MDN. However, MDN serves a
large percentage of the developer community.

Actual
After fielding the survey for three weeks, we have 6,645 cleaned,
completed responses — cleaned meaning the response met the
criteria of our data model. How that compares to 2019 is below.
Because the nature of this study is an open call for participants, year
over year comparisons are not apples to apples. However, there were
no significant changes in the overall makeup of participants.

Respondent Overview

2019 2020 Delta
Total: 76,188 Total: 30,844 55,344 Fewer in 2020

Eligible, Complete:
26,854

Eligible, Complete: 6,645 20,209 Fewer in 2020

Completion Rate: 37.4% Completion Rate: 21.2% Completion Rate
Dropped by 15.2%

Partial: 49,334 Partial: 22,840 Partial Increased by
16.4% (as % of Total Re-
sponses)

Disqualified: 5,430 Disqualified: 1,359 Disqualified Decreased
by 3% (as % of Total Re-
sponses)

MDN Web Developer Needs Assessment / 7

A goal from the onset of this project was to have a broad, global rep-
resentation of the developer community. Despite increased attempts
to get the survey in front of representative audiences, 87% of the
respondents identify as men which is similar to last year (87.1%). Our
representation of respondents who identify as female is down from
8.2% in 2019 to 6.8% in 2020. More respondents saw neither option
as suitable up to 1.8% from 1.1% in 2019. More people declined to
state their gender, 4.3% compared to 3.6% last year.

To put the breakdown by gender into perspective, the US Bureau of
Labor Statistics1 estimates that women’s participation in the soft-
ware developer workforce is more like 20%, though it’s not imme-
diately obvious what constitutes their definition of the software
developer workforce compared to the audience for this study. When
filtering our results by respondents from the United States who
selected woman, we have a representation of 10.8% which is a small
decline from 2019 where our representation was 10.9%

This discrepancy in genders is another bias in the first version of the
MDN Web DNA, and unfortunately, is a common problem with many
developer surveys. The difference in representation could be a result
of how we fielded the survey. Our methods may have contributed
to a less representative audience by utilizing outlets that uninten-
tionally exclude or dissuade women and other minority groups from
participation. For 2020, we added a new, optional question which
asked respondents whether they identify as a minority within their
country and 16.1% do identify as a minority. Only 1% of respondents
chose not to respond.

We did attempt to gather more diversity by sending it to specific
women-groups. In future iterations, we will continue to aim for fair
representation and ways to mitigate or account for the bias.

1 https://www.bls.gov/opub/reports/womens-databook/2017/home.html

Responses By Gender

The answers to choose from were carefully considered and vetted by
Mozilla’s legal team. The four choices offered were intentional. We
launched the survey globally and had optional questions that asked
for personally identifiable information. The degree of legal recog-
nition provided to people who do not identify with a gender consis-
tent with the gender assigned at birth varies widely throughout the
world. We did not want to have data on gender that could put people
in harm’s way. Of completed responses, 50.4% answered the optional
question, which asked for personally identifiable information.

Decline to state

Neither of these describe me

Identify as woman

Identify as man

4.3%

1.8%

87.0%

6.8%

n = 6645

MDN Web Developer Needs Assessment / 8

Africa
Oceania

Europe

North & Central America

South America

n=1417
23%

n=392
6%

Asia

n=134
2%

n=148
2%

n=1,740
26%

n=2,814
42%

Responses By Region

MDN Web Developer Needs Assessment / 9

The survey was localized from English into seven languages listed
alphabetically:

• Chinese (simplified)
• French
• Japanese
• Korean
• Portuguese (Brazil)
• Russian
• Spanish

Last year, we had eight languages. We opted not to translate the
survey into Arabic for this year because it accounted for less than 1%
of the survey responses last year.

These languages are a combination of stakeholder input as well as
what is most accessed on MDN. The translations offered likely influ-
enced who participated in the study.

The survey includes responses from 137 countries, down from 2019’s
173 countries. 37 countries have 30 or more respondents each.

The countries with the most significant participation, measured by
300 responses or more are:

• United States - 16.6%
• Germany 7.4%
• Russia - 7%
• China - 6.4%
• France - 5.9%
• United Kingdom - 5%
• India - 4.5%
• Canada - 3.1%

Responses By Country

Like 2019, participants were asked, “Which best describes the type of
web developer you are?” However this year, respondents were only
allowed to select one option whereas last year they could select all
that apply. We also included a new type of developer in this year’s
survey, Test Engineer, but it was not a popular choice, with only .5%
of respondents selecting it as their option.

Most respondents identified as Full Stack or Front-end. The latter
had two variations to pick: primarily JavaScript or primarily CSS
and HTML. Full stack had the most representation at 59.1%, up from
57.1% last year. Back end had the least representation at 4.1, down
from 11.7% last year%.

MDN Web Developer Needs Assessment / 10

Responses By Type of Developer

Full stack (front-end and back-end)

Other type of web developer

Back-end

Front-end (primarily CSS and HTML)

Front-end (primarily JavaScript)

Test Engineer

n = 6645

59.1%

4.1%

2.5%

0.5%

9.6%

24.2%

This year, the respondents were fairly even across developers who
have less than or equal to five years of experience developing for
the web and those that have six years or more, at 52.2%, and 47.8%
respectively. In 2019, the breakdown wasn’t as close. We had more
developers with five years of experience or less than we did for those
with six years or more, 60.2%, and 39.8% respectively.

The largest group in this year’s study were developers with ten or
more years of experience, at 30.9% of the respondents. Whereas in
2019, the largest group were developers with 3-5 years of experience,
at 28.4% of respondents.

MDN Web Developer Needs Assessment / 11

Responses By Experience Level

Developing 10+ years

Developing less than 1 year

Developing 6-9 years

Developing 1-2 years

Developing 3-5 years

n = 6645

30.9%

16.8%

8.4%

18.1%

25.7%

Overall Satisfaction
With the Web

In 2019, we established a question about web developers' overall
satisfaction with the web. We intended for the question to be repeat-
ed in future studies, creating a baseline measurement to see how
satisfaction ratings change over time. The question was repeated in
this year’s survey, with a slight word change from very to strongly.
We also changed the position of the question having it appear before
the Needs Assessment. We thought asking a question about satisfac-
tion after having respondents sort through things that cause frus-
tration when developing for the web might lend a negativity bias to
the results.

We asked survey respondents, “How would you rate your overall sat-
isfaction with the Web, as a platform and set of tools, to enable you
to build what you need or want?”

We learned that a majority, 77.7%, of respondents are either strong-
ly satisfied or satisfied with the Web, whereas 6.7% are either very
dissatisfied or dissatisfied. This represents a slight but not apprecia-
bly meaningful increase in satisfaction compared to last year, with a
concomitant slight decline in dissatisfaction.

In 2019, 77% of respondents were very satisfied or satisfied with the
Web, whereas 8.4% were very dissatisfied or dissatisfied.

MDN Web Developer Needs Assessment / 13

Overall Satisfaction With the Web

Dissatisfied

Neither satisfied nor dissatisfied

Strongly satisfied

Satisfied

Strongly dissatisfied

n = 6,645

15.5%

5.6%

1.1%

60.6%

17.1%

For a more nuanced view of overall web satisfaction, we added new
questions for 2020. We asked respondents to rate their satisfaction
with different subcategories of the web. We chose the categories
based on the need themes from 2019. The subcategories were:

• Browser compatibility (differences between implementa-
tions)

• Documentation for the Web platform (HTML, CSS, JavaS-
cript, etc.)

• Documentation for frameworks and libraries
• Browser developer tools
• IDEs
• Automated browser testing tools
• Tools for understanding and improving performance
• Tools for understanding and improving accessibility
• Tools for understanding and improving privacy and security

Each of the Satisfaction subcategories are shown below, as compared
to the mean overall satisfaction score:

MDN Web Developer Needs Assessment / 14

Satisfaction by Subcategory

Documentation for frameworks & libraries

IDEs

Browser dev tools

HTML, CSS, JavaScript, etc. documentation

Mean overall satisfaction

Automated browser testing tools

Performance tools

n = 6,645

Browser compatibility

Accessibility tools

Privacy and security tools

4.01

3.63

3.96

3.27

3.04

3.02

2.98

2.87

3.87

4.23

Satisfaction with the following rates higher than the overall satisfac-
tion, whereas the remaining sub categories score lower than overall
satisfaction:

• Documentation for the Web platform (HTML, CSS, JavaS-
cript, etc.)

• Browser developer tools
• IDEs

Needs Assessment

MDN Web Developer Needs Assessment / 16

Before sharing the top ten needs, we’re briefly describing what a
need is to help set the context for the following Findings section.

The need statements were informed from the fourteen pilot inter-
views conducted at the beginning of this project. The statements are
written from the point of view of a web developer. The outline we
used to create the need statements was:

I am a __________________ (persona) trying to
__________________ (verb) but __________________ (barri-
er) because __________________ (cause), which makes me feel
__________________ (emotional reaction).

Putting this into action, it could read as follows:

I am a tourist trying to travel to another country but am struggling
to understand the Visa process because it’s complex and poorly com-
municated, which makes me feel frustrated.

We drew upon common practices in design thinking as well as prod-
uct-development processes for inspiration when deciding to use
need statements in the survey. Because they are written from the
point of view of developers, we felt it would be an intuitive way to
read, interpret, and rank to get to the top ten.

The need statements for this project were centered around the emo-
tional reaction of frustration. If a web developer experiences frus-
tration in regards to web development, there may be an underlying
opportunity for browser vendors to help solve that frustration.

What is a Need?

Changes Between 2019 and 2020
We made changes to the needs list between the first and second
iteration of the study, but kept the overall list at 28. There were mi-
nor edits to the phrasing of some of the need statements, but more
importantly we removed some statements and added new ones.

We removed the following need statements in the 2020 survey:
• Deciding what to learn next to keep my skill set relevant.

(Ranked 19 in 2019)
• Finding a community of peers. (Ranked 27 in 2019)
• Fixing a bug once it’s been identified. (Ranked 28 in 2019)

Those were replaced with these new need statements:
• Working with different tracking protection and data stor-

age policies in browsers.
• Using web technologies in a native or hybrid context (e.g.

using WebViews, Electron, CEF, or mini-apps).
• Lack of support for progressive web apps (PWAs)

MDN Web Developer Needs Assessment / 17

Using the Maximum Difference Scaling (MaxDiff) methodology, we
asked survey respondents to evaluate a total of 28 need statements.
Respondents saw sixteen sets comprising five need statements,
ensuring that each of the 28 needs was seen ~3x by each respondent
over the length of the exercise. For each set they were instructed to
pick the one need that causes them the least frustration and the one
need that causes them the most frustration. A single need statement
could appear more than once within the sixteen sets.

It is important to note that just because a need may not rank as the
least frustrating within a set, that does not mean it causes the least
frustration. It could imply that the respondent does not have expe-
rience with the subject matter or does not prioritize that subject
within their work.

For 2020, we employed more sophisticated analysis of the MaxDiff
data. We expand on that in the methodology section. In short, this
year we:

• Used Python to code, clean, and visualize the data
• Employed the Choice-Based Conjoint/Hierarchical Bayes

(CBC/HB) standalone estimation module from Sawtooth
Software to estimate MaxDiff utilities

• Eliminated inconsistent responders
• Eliminated speeders who were below a response consisten-

cy threshold
• Ratio scaled the needs, converting them to importance

(frustration) scores that sum to 100 across the set of items

Ranking Methodology

The chart below shows the changes in the top ten needs between
2019 and 2020. The top ten needs stayed the same, however their
order changed.

MDN Web Developer Needs Assessment / 18

Top Ten Needs

4

3

2

1

5

9

8

7

6

10

3. Making a design look/work the same across browsers

4. Testing across browsers

5. Discovering bugs not caught during testing

1. Having to support specific browsers (e.g., IE11)

2. Avoiding or removing a feature that doesn't work across browsers

8. Managing user data to comply with laws and regulations

9. Supporting multiple frameworks in the same code base

10. Understanding and implementing security measures

n = 26,854 n = 6,645

2019 2020

6. Outdated or inaccurate documentation for frameworks and libraries

7. Keeping up with a large number of new and existing tools or frameworks

The chart on the following page display bars of the mean frustra-
tion scores for all 28 needs. These sum to 100 across the needs and
are ratio scaled. Any mathematical relationship can be evaluated
across the items. For example, an item with a score of 6 is 2x more
frustrating than an item with a score of 3; an item with a score of 5
is 5x more frustrating than an item with a score of 1. Simply divide
the larger score by the smaller score to learn any ratio difference
between items.

MDN Web Developer Needs Assessment / 19

Ranking of All Needs

MDN Web Developer Needs Assessment / 20

Ranking of All Needs

Testing across browsers

Making a design look/work the same across browsers

Avoiding or removing a feature that doesn't work across browsers

Having to support specific browsers (e.g., IE11)

Discovering bugs not caught during testing

Supporting multiple frameworks in the same code base

Managing user data to comply with laws and regulations

Keeping up with a large number of new and existing tools or frameworks

Outdated or inaccurate documentation for frameworks and libraries

Knowing what browsers support a specific technology

Implementing performance optimizations

Making web sites/applications accessible

Running front-end tests

Keeping up with changes to the web platform

Outdated documentation for HTML, CSS, and JavaScript

n = 6,645

Getting users to grant permissions to Web APIs (e.g., Geolocation)

Implementing localization

Capability of the web to support a specified layout

Understanding and implementing security measures

Running end-to-end tests

Determining the root cause of a bug

Working with different tracking protection and data storage policies in browsers

Lack of APIs to take advantage of device capabilities (e.g, sensors, OS and hardware features, etc.)

Lack of support for progressive web apps (PWAs)

Using web technologies in a native or hybrid context (e.g, using WebViews, Electron, CEF, or mini-apps)

Achieving visual precision on stylized elements (e.g., buttons)

Integrating with third parties for authentication

Pinpointing existing performance issues

4.86

4.82

4.73

7.54

5.50

4.01

3.93

3.87

4.63

4.69

3.54

3.47

3.38

3.55

3.76

2.90

2.86

2.79

3.02

3.31

2.50

2.48

2.45

2.68

2.69

1.59

2.17

2.25

MDN Web Developer Needs Assessment / 21

Needs Segmentation

Underneath the surface, there is a large degree of heterogeneity
when it comes to developer needs and frustrations. The mean Max-
Diff scores can hide this heterogeneity. New for this year are results
of a segmentation analysis to better understand the richness of the
data. Seven segments emerged. We created somewhat-whimsical
names based on which needs pop up as more important for each
group.

1. Documentation Disciples
2. Browser Beaters
3. Progressive Programmers
4. Testing Technicians
5. Keeping Currents
6. Performance Pushers
7. Regulatory Wranglers

We arrived at these segments from a k-prototypes model with seven
clusters or segments. More on how we arrived at these segments,
and why we chose the k-prototypes model is in the methodology
section.

Each segment has widely divergent needs that surface as the most
frustrating when compared to the overall mean scores.

MDN Web Developer Needs Assessment / 22

Documentation Disciples

This segment makes up 13% of our respondents. As you may have noticed with the name, their top frustrations are outdated documentation
for frameworks and libraries and outdated documentation for HTML, CSS, and JavaScript. Their mean importance scores vary on each need
statement, but the chart only highlights the top frustrations for this segment.

Testing across browsers

Making a design look/work the same across browsers

Avoiding or removing a feature that doesn't work across browsers

Having to support specific browsers (e.g., IE11)

Discovering bugs not caught during testing

Supporting multiple frameworks in the same code base

Managing user data to comply with laws and regulations

Keeping up with a large number of new and existing tools or frameworks

Outdated or inaccurate documentation for frameworks and libraries

Knowing what browsers support a specific technology

Implementing performance optimizations

Making web sites/applications accessible

Running front-end tests

Keeping up with changes to the web platform

Outdated documentation for HTML, CSS, and JavaScript

n = 899
n = 6,645

Getting users to grant permissions to Web APIs (e.g., Geolocation)

Implementing localization

Capability of the web to support a specified layout

Understanding and implementing security measures

Running end-to-end tests

Determining the root cause of a bug

Working with different tracking protection and data storage policies in browsers

Lack of APIs to take advantage of device capabilities (e.g, sensors, OS and hardware features, etc.)

Lack of support for progressive web apps (PWAs)

Using web technologies in a native or hybrid context (e.g, using WebViews, Electron, CEF, or mini-apps)

Achieving visual precision on stylized elements (e.g., buttons)

Integrating with third parties for authentication

Pinpointing existing performance issues

4.86

4.82

4.73

7.54

5.50

4.01

3.93

3.87

4.63

2.45 8.29

4.69
10.15

3.54

3.47

3.38

3.55

3.76

2.90

2.86

2.79

3.02

3.31

2.50

2.48

2.25

2.68

2.69

1.59

2.17

MDN Web Developer Needs Assessment / 23

Browser Beaters

This segment makes up 21% of our respondents, and is the largest segment. Their top frustrations are clustered around issues with browser
compatibility, design and layout. Their mean importance scores vary on each need statement, but the chart only highlights the top frustra-
tions for this segment.

Testing across browsers

Making a design look/work the same across browsers

Avoiding or removing a feature that doesn't work across browsers

Having to support specific browsers (e.g., IE11)

Discovering bugs not caught during testing

Supporting multiple frameworks in the same code base

Managing user data to comply with laws and regulations

Keeping up with a large number of new and existing tools or frameworks

Outdated or inaccurate documentation for frameworks and libraries

Knowing what browsers support a specific technology

Implementing performance optimizations

Making web sites/applications accessible

Running front-end tests

Keeping up with changes to the web platform

Outdated documentation for HTML, CSS, and JavaScript

Getting users to grant permissions to Web APIs (e.g., Geolocation)

Implementing localization

Capability of the web to support a specified layout

Understanding and implementing security measures

Running end-to-end tests

Determining the root cause of a bug

Working with different tracking protection and data storage policies in browsers

Lack of APIs to take advantage of device capabilities (e.g, sensors, OS and hardware features, etc.)

Lack of support for progressive web apps (PWAs)

Using web technologies in a native or hybrid context (e.g, using WebViews, Electron, CEF, or mini-apps)

Achieving visual precision on stylized elements (e.g., buttons)

Integrating with third parties for authentication

Pinpointing existing performance issues

n = 1370
n = 6,645

4.73

4.01

3.93

3.87

4.63

4.69

3.54

3.47

3.38

3.55

3.76

2.90

2.86

2.79

3.02

3.31

2.48

2.45

2.68

2.69

1.59

2.17

2.25

5.50
8.70

4.82
7.22

4.86
9.66

2.50 4.44

7.54 10.14

MDN Web Developer Needs Assessment / 24

Progressive Programmers

This segment makes up 11% of our respondents. Their top frustrations are clustered around lack of APIs, lack of support for Progressive
Web Apps (PWAs), and using web technologies. For them, browser related needs were typically less frustrating than the overall mean. Their
mean importance scores vary on each need statement, but the chart only highlights the top frustrations for this segment.

Testing across browsers

Making a design look/work the same across browsers

Avoiding or removing a feature that doesn't work across browsers

Having to support specific browsers (e.g., IE11)

Discovering bugs not caught during testing

Supporting multiple frameworks in the same code base

Managing user data to comply with laws and regulations

Keeping up with a large number of new and existing tools or frameworks

Outdated or inaccurate documentation for frameworks and libraries

Knowing what browsers support a specific technology

Implementing performance optimizations

Making web sites/applications accessible

Running front-end tests

Keeping up with changes to the web platform

Outdated documentation for HTML, CSS, and JavaScript

Getting users to grant permissions to Web APIs (e.g., Geolocation)

Implementing localization

Capability of the web to support a specified layout

Understanding and implementing security measures

Running end-to-end tests

Determining the root cause of a bug

Working with different tracking protection and data storage policies in browsers

Lack of APIs to take advantage of device capabilities (e.g, sensors, OS and hardware features, etc.)

Lack of support for progressive web apps (PWAs)

Using web technologies in a native or hybrid context (e.g, using WebViews, Electron, CEF, or mini-apps)

Achieving visual precision on stylized elements (e.g., buttons)

Integrating with third parties for authentication

Pinpointing existing performance issues

n = 763
n = 6,645

4.86

4.82

4.73

7.54

5.50

4.01

3.93

3.87

4.63

4.69

3.54

3.47

2.86

2.90

3.38

3.55

3.76

2.79

3.02

3.31

2.50

2.48

2.45

2.68

2.69

1.59

2.17

2.25

8.10

3.55

3.38

2.86 7.52

2.90 4.95

3.11

4.45

1.59

MDN Web Developer Needs Assessment / 25

Testing Technicians

This segment makes up 13% of our respondents. Needs statements relating to testing, whether end-to-end, front-end, or testing across
browsers, caused the most frustration for this segment. Their mean importance scores vary on each need statement, but the chart only
highlights the top frustrations for this segment.

Testing across browsers

Making a design look/work the same across browsers

Avoiding or removing a feature that doesn't work across browsers

Having to support specific browsers (e.g., IE11)

Discovering bugs not caught during testing

Supporting multiple frameworks in the same code base

Managing user data to comply with laws and regulations

Keeping up with a large number of new and existing tools or frameworks

Outdated or inaccurate documentation for frameworks and libraries

Knowing what browsers support a specific technology

Implementing performance optimizations

Making web sites/applications accessible

Running front-end tests

Keeping up with changes to the web platform

Outdated documentation for HTML, CSS, and JavaScript

Getting users to grant permissions to Web APIs (e.g., Geolocation)

Implementing localization

Capability of the web to support a specified layout

Understanding and implementing security measures

Running end-to-end tests

Determining the root cause of a bug

Working with different tracking protection and data storage policies in browsers

Lack of APIs to take advantage of device capabilities (e.g, sensors, OS and hardware features, etc.)

Lack of support for progressive web apps (PWAs)

Using web technologies in a native or hybrid context (e.g, using WebViews, Electron, CEF, or mini-apps)

Achieving visual precision on stylized elements (e.g., buttons)

Integrating with third parties for authentication

Pinpointing existing performance issues

n = 839
n = 6,645

4.86

7.54

5.50

4.01

3.93

3.87

4.63

4.69

8.36

3.54

3.38

3.55

3.76

2.90

2.86

3.02

3.31

2.50

2.48

2.45

2.68

2.69

1.59

2.17

2.25

2.86

2.86

2.86

4.73 5.91

4.82 696

3.47

2.79 8.19

MDN Web Developer Needs Assessment / 26

Keeping Currents

This segment makes up 13% of our respondents. The need statements that this segment found most frustrating were keeping up with a
large number of new and existing tools and frameworks and keeping up with changes to the web platform. Their mean importance scores
vary on each need statement, but the chart only highlights the top frustrations for this segment.

Testing across browsers

Making a design look/work the same across browsers

Avoiding or removing a feature that doesn't work across browsers

Having to support specific browsers (e.g., IE11)

Discovering bugs not caught during testing

Supporting multiple frameworks in the same code base

Managing user data to comply with laws and regulations

Keeping up with a large number of new and existing tools or frameworks

Outdated or inaccurate documentation for frameworks and libraries

Knowing what browsers support a specific technology

Implementing performance optimizations

Making web sites/applications accessible

Running front-end tests

Keeping up with changes to the web platform

Outdated documentation for HTML, CSS, and JavaScript

Getting users to grant permissions to Web APIs (e.g., Geolocation)

Implementing localization

Capability of the web to support a specified layout

Understanding and implementing security measures

Running end-to-end tests

Determining the root cause of a bug

Working with different tracking protection and data storage policies in browsers

Lack of APIs to take advantage of device capabilities (e.g, sensors, OS and hardware features, etc.)

Lack of support for progressive web apps (PWAs)

Using web technologies in a native or hybrid context (e.g, using WebViews, Electron, CEF, or mini-apps)

Achieving visual precision on stylized elements (e.g., buttons)

Integrating with third parties for authentication

Pinpointing existing performance issues

n = 838
n = 6,645

4.86

4.82

4.73

7.54

5.50

4.01

3.93

3.87

4.69

3.54

3.47

3.38

3.55

3.76

2.90

2.86

2.79

3.02

3.31

2.50

2.45

2.68

2.69

1.59

2.17

2.25

4.63 10.44

2.48 7.53

MDN Web Developer Needs Assessment / 27

Performance Pushers

This segment makes up 15% of our respondents. Needs statements relating to performance and bugs are the top frustrations for this seg-
ment. Needs related to testing were rated as less frustrating than the overall mean, but discovering bugs not caught during testing is high-
er. Their mean importance scores vary on each need statement, but the chart only highlights the top frustrations for this segment.

Testing across browsers

Making a design look/work the same across browsers

Avoiding or removing a feature that doesn't work across browsers

Having to support specific browsers (e.g., IE11)

Discovering bugs not caught during testing

Supporting multiple frameworks in the same code base

Managing user data to comply with laws and regulations

Keeping up with a large number of new and existing tools or frameworks

Outdated or inaccurate documentation for frameworks and libraries

Knowing what browsers support a specific technology

Implementing performance optimizations

Making web sites/applications accessible

Running front-end tests

Keeping up with changes to the web platform

Outdated documentation for HTML, CSS, and JavaScript

Getting users to grant permissions to Web APIs (e.g., Geolocation)

Implementing localization

Capability of the web to support a specified layout

Understanding and implementing security measures

Running end-to-end tests

Determining the root cause of a bug

Working with different tracking protection and data storage policies in browsers

Lack of APIs to take advantage of device capabilities (e.g, sensors, OS and hardware features, etc.)

Lack of support for progressive web apps (PWAs)

Using web technologies in a native or hybrid context (e.g, using WebViews, Electron, CEF, or mini-apps)

Achieving visual precision on stylized elements (e.g., buttons)

Integrating with third parties for authentication

Pinpointing existing performance issues

n = 979
n = 6,645

4.86

4.82

4.73

7.54

5.50

4.01

3.93

3.87

4.63

4.69

3.54

3.47

3.38

3.55

2.90

2.86

2.79

3.02

3.31

2.50

2.48

2.45

2.69

1.59

2.17

2.25

2.68 7.13

3.76 8.60

MDN Web Developer Needs Assessment / 28

Regulatory Wranglers

This segment makes up 14% of our respondents. This is the more eclectic segment, with a bigger assortment of needs rating higher than
the overall mean. However, compliance with laws and regulations for managing user data is the most frustrating need. Their mean impor-
tance scores vary on each need statement, but the chart only highlights the top frustrations for this segment.

Testing across browsers

Making a design look/work the same across browsers

Avoiding or removing a feature that doesn't work across browsers

Having to support specific browsers (e.g., IE11)

Discovering bugs not caught during testing

Supporting multiple frameworks in the same code base

Managing user data to comply with laws and regulations

Keeping up with a large number of new and existing tools or frameworks

Outdated or inaccurate documentation for frameworks and libraries

Knowing what browsers support a specific technology

Implementing performance optimizations

Making web sites/applications accessible

Running front-end tests

Keeping up with changes to the web platform

Outdated documentation for HTML, CSS, and JavaScript

Getting users to grant permissions to Web APIs (e.g., Geolocation)

Implementing localization

Capability of the web to support a specified layout

Understanding and implementing security measures

Running end-to-end tests

Determining the root cause of a bug

Working with different tracking protection and data storage policies in browsers

Lack of APIs to take advantage of device capabilities (e.g, sensors, OS and hardware features, etc.)

Lack of support for progressive web apps (PWAs)

Using web technologies in a native or hybrid context (e.g, using WebViews, Electron, CEF, or mini-apps)

Achieving visual precision on stylized elements (e.g., buttons)

Integrating with third parties for authentication

Pinpointing existing performance issues

n = 957
n = 6,645

4.86

4.82

4.73

7.54

5.50

3.93

4.63

4.69

3.54

3.47

3.38

3.76

2.90

2.86

2.79

3.02

2.50

2.48

2.45

2.68

2.69

1.59

2.17

2.25

4.01 8.65

3.87 7.01

3.55 6.61

3.31 5.39

MDN Web Developer Needs Assessment / 29

Because the Developer Needs Assessment is intended to be repro-
duced annually, we asked survey respondents whether the list of
28 needs was a fair representation of the needs they experience as
a web developer. While most respondents agreed the list was rep-
resentative, 13.4% neither agreed nor disagreed which means there
is room for improvement in the needs list. This is an improvement
from 2019, where 21.6% neither agreed nor disagreed.

How Developers Felt About the Needs List

Disagree that needs are represented

Strongly agree that needs are represented

Neither agree nor disagree that needs are represented

Agree that needs are represented

Strongly disagree that needs are represented

n = 6,645

11.0%

5.0%

2.0%

68.6%

13.4%

What’s Missing
From the Web

MDN Web Developer Needs Assessment / 31

In 2019, we included the open-ended, “What are things that you
would like to be able to do on the Web but lack web platform features
to do?” This was an optional question, not requiring a response.

Last year, we hand categorized the answers. We took a random 1,000
answers and manually categorized them into 109 categories, up to
three categories per answer. We used the first or most prominent
issue as the first category. Of the 109 categories, only seven had 3%
or more of the answers:

• Access to Hardware (12.4%)
• Browser Compatibility (8.6%)
• Access to Filesystem (4.7%)
• Performance (3.4%)
• PWA support (3.4%)
• Debugging (3.3%)
• Access to Native APIs (3%)

We added a new question this year that built upon what we learned
from the open-ended answers from last year. We increased the list
above by adding CSS support, which accounted for 2.9% of the cat-
egorized answers from last year. The question was, “Which do you
feel are most lacking from the web platform?” Respondents were
allowed to select up to three. Browser Compatibility was the most
selected option at 48.8% of the responses.

What’s Missing From the Web

APIs giving access to hardware

Access to native APIs

Performance

Browser compatibility

Debugging

CSS support

Access to filesystem

None of these

PWA support

n = 6645

30.2%

28.8%

20.3%

48.8%

30.9%

15.8%

19.4%

7.6%

19.9%

MDN Web Developer Needs Assessment / 32

Following the above question, we added an open-ended question,
“What other things would you like to be able to do on the Web but
lack web platform features to do?” This is a slight word change
between 2019 and 2020 with the phrase, ‘what other things,’ being
key. However, that nuance may have been lost on respondents as
evidenced by the analysis of their responses or they reiterated how
important an option was to them.

To analyze the open-ended responses from this year, we employed
natural language processing techniques. Specifically, we trained a
decision-tree-based model on the 2019 answers and categories. The
caveats are, it only works on a limited number of categories, and it
can only assign one category per response. On the 2019 data, it pre-
dicted one of the three categories 92% of the time.

Open-ended questions are difficult to analyze because you cannot
be sure how a respondent interpreted the question, and therefore
what context to apply to their answer. With that in mind, we went
through the responses and eliminated answers that did not answer
the question at hand. For example, many responses had some form
of, ‘non-applicable,’ or, ‘nothing is missing.’ After deleting non-perti-
nent answers, the remaining responses totaled 1,437.

The model used 60 categories. However, of those categories and
removing ‘Other,’ only ten had 2% or more of the answers.

The results of the open-ended responses match up pretty well with
the options provided in the question before the open-ended ques-
tion, with accessibility and security bubbling up as strong contend-
ers for what’s missing from the web. Select verbatims that help con-
vey the deeper meaning of the category are on the following pages.

What’s Missing From the Web

Browser Compatibility

Access to Filesystem

PWA support

CSS

Access to Hardware

Avoid JavaScript

Accessibility

Performance

Security

Debugging

n = 648

10.65%

3.76%

3.76%

3.27%

4.73%

10.02%

2.02%

2.44%

2.02%

2.44%

MDN Web Developer Needs Assessment / 33

What’s Missing From the Web

Browser Compatibility

“Browser cross-compatibility and extensibility in secure configura-
tions under which plugins are created for platforms.”

“Fully cross-browser compatibility. No ‘implementation-specific’
points in standards or drafts.”

“I'd love to write some HTML/CSS and not have it behave differently
in six months when the specs/browsers change yet again.”

Access to Hardware

“Hardware/Native API. We do a lot of automation to support doctors,
think automatically position windows across multiple screens among
other things. We currently have to install a desktop app that the
website can talk to make this work well. That combined with dictation
software creates a barrier between us and the doctors.”

It's worth noting that the following quote is a bit of an outlier in
that they are asking for something many web developers are ask-
ing for, however, there's a lack of trust that browser vendors will
implement it fairly.

“As a developer, I'd like native and hardware API access in order to
build a wider range of software on the web platform. But the certainty
that such APIs would instantly be abused, and that browser vendors
(looking at you, Google) would fail to provide sufficiently strong and
user-comprehensible security and privacy controls, leads me to hope
those APIs never ship.”

“User-allowed access to hardware.”

CSS

“Tons of CSS things.. better attr(), better calc()...”

“Support more features only available via CSS preprocessors (e.g.
SCSS), e.g. loops, conditions, macros, more functions.”

“Support for CSS across browsers is super important to me -- I am one
of the only developers in my office who works on CSS but it has the
biggest impact on what our clients care about (branding, etc).”

Access to Filesystem

“I clicked Access to filesystem, but to emphasize it, I put it here, too.”

“Full access to a folder for media management. Persistent state stor-
age on the filesystem, not subject to the whims of browser storage
cleanup.”

“Having access to a virtual filesystem without all of the extra steps
and external libraries normally associated with it.”

PWA Support

“I would love to make a webapp, that Chrome/Chromium doesn't
break with each third release, because they hate users so hard. Other
than that: PWA on desktop, not mobile.”

“The problem is that PWA doesn't work in Safari, and there's no way to
run chrome on iOS, so we are blocked on iOS.”

“Bundle a PWA in a single file to distribution, such as a zip file that
can be run like a native app from the OS.”

MDN Web Developer Needs Assessment / 34

What’s Missing From the Web

Avoid JavaScript

“Completely Delete JavaScript from the whole Universe.”

“The lack of precise decimal numbers in JavaScript has been a pain
point for a long time particularly considering that the apps I work on
have to deal primarily with money. If there is one thing I would love to
have in JavaScript is a decimal type like the one in .Net.”

“Basically I want all browsers to be rewritten to use WebAssembly
on top of which DOM/DOM manipulation is implemented on top of
which, next level up, JavaScript, etc. are implemented in the VM/IL
virtual assembly op code language of the WebAssembly VM imple-
mentation.”

Performance

“Better bind back and frontend. Node/TS helps a lot, but the solutions
are immature and pretty much non-performant, and that severely
limits the amount of stuff that can be done on the web. Nowadays
browsers have incredible capabilities, and are as complex as an OS, so
I would love to see support for more complex, performant, and united
apps.”

“Build high-performance solutions (C++ like performant) with strong
graphical features. An app that would resemble an AAA video game
but in the browser. I'm looking forward to WASM going into main-
stream.”

“Rendering performance and options are disappointing compared to
native. The primary issue is the 1-2 frames of additional delay in-
troduced by the web browser when using canvas/WebGL to display
mouse/keyboard inputs. Configuring vsync/gsync/high refresh rate
can also be frustrating.”

Debugging

“Easier debugging of browser apps from command line for automat-
ed testing. Yes, there are hacky ways to do it, but first class ways of
debugging (tests passed/tests failed) from the command line would be
such a time saver.”

“Debugging should be more traceable. For example using Vue or other
web frameworks sometimes an error is marked as if the root cause
were the framework (does not pinpoint the correct js file).”

“Containers have made the use of a lot of debugging/dev tools harder
or not able to be used.”

Security

“While I still may be new to the coding journey, security...on the in-
ternet is still the number one concern. Personally, I feel the complex
jargon used to describe how web security functions in the modern era
makes learning and implementing best security practices one of the
most difficult things as a new programmer, even if you go with the
third-party options.”

“Proper Firefox extensions, I would love to go back to the state be-
fore crippling them with webextensions and questionable "security"
decisions (companies should allow users to install extensions from
anyone, not just subjects approved by browser companies. You cannot
in Firefox nor Chrome fully install an extension which was not signed
by Mozilla/Google).”

“Interact with OS specific APIs to store and receive secrets like e.g.
PGP keys in order to allow E2E and "crowd" encryption. Currently it is

MDN Web Developer Needs Assessment / 35

What’s Missing From the Web

only possible to store such secrets in the local storage which is a secu-
rity risk and can end in data loss when the user clears the data.”

Accessibility

“Accessibility tools and features are grossly lacking.”

“Accessibility support beyond most trivial of basics requires heavy
research, and knowing if you're doing it well is [shrug].

“Accessibility, screen reader supports are chaos right now. As every
application is trying to be WCAG compliant it make sense [that] ARIA
comes by default or have better APIs to handle.”

Technologies

MDN Web Developer Needs Assessment / 37

Programming Languages

MDN Web Developer Needs Assessment / 38

Being core programming languages for the web, we wanted to know
what pain points developers have when using JavaScript, HTML,
CSS, and WebAssembly.

In 2019, for each of the languages we asked, “What are the biggest
pain points for you when it comes to [programming language] devel-
opment? Select all that apply.”

We asked the same question, but new for this year, we then followed
up with a second question, taking all the answers selected from the
previous question, we asked them to pick the biggest. This allowed
us to report more accurate numbers in terms of which is truly the
biggest pain point.

Programming Languages

MDN Web Developer Needs Assessment / 39

2.5% of our overall respondents said they do not use JavaScript. Of
those who do use JavaScript, 14.9% said they have no pain points. Of
those who do have issues with JavaScript, the biggest pain point is
the same as last year, “Lack of browser/engine adoption/support for
a given language feature.” Other ranks third, which suggests there
are pain points not captured in our list.

We had respondents who selected JavaScript as one of the languages
they use define where they are using JavaScript:

• 45.1% are using JavaScript on a browser
• .8% are using JavaScript on a server
• 51.6% are using JavaScript on both a browser and a server

JavaScript

Lack of interoperability between implementations

Other

Inadequate performance (speed and size), particularly on low-end devices

Lack of browser/engine adoption/support for a given language feature

Lack of debug tooling support (browser dev tools)

Lack of internationalization APIs or localization support

Browser updates causing things to break

Lack of perfomance (speed and size) profiling support

Lack of build tooling support (in Babel/webpack/uglify.js/etc.)

n = 5,472

12.7%

10.3%

9.1%

20.8%

18.4%

6.5%

5.7%

7.7%

8.9%

MDN Web Developer Needs Assessment / 40

For those who use HTML, 32.6% said they have no pain points. Of
those who do have issues with HTML, the biggest pain point is the
same as JavaScript, “Lack of browser/engine adoption/support for
a given language feature.” A close second is, “Inability to customize
components built into HTML.”

HTML

Lack of interoperability between implementations

Not enough components built into HTML

Inability to customize components built into HTML

Lack of browserengine adoption/support for a given feature

The quality of components built into HTML

Other

n = 4,063

13.5%

12.2%

7.6%

11.1%

29.0%

26.6%

MDN Web Developer Needs Assessment / 41

For those who use CSS, 12.5% said they have no pain points. Of those
who do use CSS, 32.5% said their biggest pain point is challenges
creating the layout specified. This was the same pain point as last
year. Similar to JavaScript, Other ranks high on the lists, which sug-
gests there are pain points not captured in our list.

CSS

Challenges creating the layout desired

Inadequate progressive enhancement strategy

Other

Lack of interoperability between implementations

Lack of browser/engine support for a given language feature

Lack of debug tooling support (browser dev tools)

Lack of build tooling support (in Babel/webpack/uglify.js/etc.)

Lack of perfomance (speed and size) profiling support

Browser updates causing things to break

n = 5,017

32.5%

6.8%

6.7%

6.0%

11.3%

26.4%

2.8%

3.7%

3.8%

MDN Web Developer Needs Assessment / 42

For those who use WebAssembly, 20.8% said they have no pain
points. Since Web Assembly is still considered a relatively new lan-
guage, the respondents who use the language were able to provide
information about their pain points. The largest pain, with 34.9%, is
a lack of debug tooling support. This was the same pain point as last
year. Like CSS, Other ranks fourth, which suggests there are pain
points not captured in our list.

WebAssembly

Other

Lack of build tooling support (in Emscripten/Babel/webpack/etc.)

Lack of browser/engine support for a given language feature

Lack of debug tooling support (browser dev tools or IDE integration)

Lack of interoperability between implementations

Browser updates causing things to break

Lack of perfomance (speed and size) profiling support (browser dev tools or IDE integration)

Inadequate performance (speed and size), particularly on low-end devices

n = 229

14.0%

10.0%

6.1%

34.9%

19.2%

4.8%

5.2%

5.7%

MDN Web Developer Needs Assessment / 43

Adoption of New Technologies

MDN Web Developer Needs Assessment / 44

The biggest barrier developers face when adopting a new technol-
ogy is broad interoperability across browsers, which is the same as
last year. A close second is support for legacy browsers. Considering
that having to support specific browsers is the overall number one
frustration developers have when developing for the web, it’s not
surprising that barriers to adopting new technologies are related to
browser compatibility.

New for this year was the answer, “Organizational approval.”

Adoption of New Technologies

16.2%

24.9%

23.5%

11.3%

3.3%

8.9%

11.9%

Documentation and training

Support for legacy browsers

Broad interoperability across browsers

Organization approval

Finding out about the new technology

None of the above

Tooling support and dev ecosystem

n = 5,526

MDN Web Developer Needs Assessment / 45

Browsers

MDN Web Developer Needs Assessment / 46

Chrome and Firefox lead the pack in terms of browsers developers
support, 97.5% and 88.6% respectively. Third is Safari at 59.6%.

Browsers Developers' Support

Edge (Chromium)

Chrome for Android

Firefox for Desktop

Chrome for Desktop

Safari

Internet Explorer

Edge (EdgeHTML)

Firefox for Android

Safari on iOS

Other browser

Opera Mini

Samsung Internet

UC Browser

None of the above

Baidu

QQ Browser

n = 6,645

70.0%

62.8%

60.1%

95.9%

88.7%

31.5%

28.3%

50.0%

53.6%

7.4%

5.4%

3.7%

11.3%

0.3%

1.7%

2.2%

MDN Web Developer Needs Assessment / 47

We asked developers to rank which browsers cause the most issues
and they were allowed to select up to three.

Though Internet Explorer is only supported by 28.3% of respondents,
it causes the most issues for developers. Safari and Safari on iOS
were distant second and third contenders.

Browsers That Cause Issues

Edge (EdgeHTML)

Safari on iOS

Safari

Internet Explorer

Firefox for Desktop

Edge (Chromium)

Opera Mini

Chrome for Desktop

None of the above

Firefox for Android

Chrome for Android

Samsung Internet

UC Browser

Other browser

Baidu

QQ Browser

n = 6,645

33.3%

20.7%

7.1%

66.4%

36.8%

6.2%

4.6%

6.5%

7.1%

3.5%

2.8%

2.7%

3.9%

1.8%

1.9%

2.0%

MDN Web Developer Needs Assessment / 48

Web Testing

MDN Web Developer Needs Assessment / 49

We added a new question this year, “What are the biggest pain
points for you when it comes to web testing?” What motivated this
addition was the need "Testing across browsers" which ranked #4
last year as well as this year. We wanted to understand more about
this need and what some of the underlying issues might be. 7.5% of
respondents said they don’t have pain points with web testing. For
those who did, the biggest pain point is the time spent on manual
testing.

One way to interpret these results is that the need is not merely an
echo of browser compatibility issues and having to test multiple
browsers. That's part of it, but where tests are automated, the next
difficulties are about cross-browser testing, and setting up the test
environment. This wouldn’t automatically improve if the browser
compatibility problem got better.

Web Testing

Difficult to set up an adequate test environment

Running tests across multiple browsers

Time spent on manual testing (e.g. due to lack of automation)

Difficulty diagnosing performance issues

Test failures are hard to debug or reproduce

Tests are difficult to write

Slow-running tests

Other

Lack of debug tooling support (browser dev tools or IDE integration)

n =6,144

15.1%

24.3%

17.8%

9.2%

6.6%

5.8%

14.5%

3.3%

3.4%

MDN Web Developer Needs Assessment / 50

Accessibility

MDN Web Developer Needs Assessment / 51

In the need rankings from last year, “Making sites accessible,”
ranked 24 out of 28. This year, it’s 21 out of 28. In the needs section
we noted that just because a need may not rank as the least frustrat-
ing within a set, that does not mean it causes the least frustration. It
could imply that the respondent does not have experience with the
subject matter or does not prioritize that subject within their work.
We used accessibility as an example in last year’s report based on the
pilot interview findings. We learned that developers are not always
given latitude to spend the necessary time on accessibility. There-
fore, because they cannot spend the time on it, accessibility does not
create frustration. If in the future, developers can spend more time
on accessibility, then their perception of the frustration may change,
and so would the ranking.

To get a better understanding of accessibility, we added a question
to this year’s survey. We asked, “What are the biggest pain points
for you when it comes to web accessibility?” 16% of respondents
said they don’t have pain points with accessibility. For those who
answered, the biggest pain point is learning how to design and build
accessible experiences. The second pain point is a lack of support
from my employer regarding accessibility.

Accessibility

11.0%

44.6%

20.6%

10.4%

2.8%

10.6%

Documentation of web accessibility APIs

Lack of support from my employer regarding accessibility

Learning how to design and build accessible experiences

Other

Support in web frameworks

Interoperability between assistive technologies like screen readers

n = 5,526

Conclusion

MDN Web Developer Needs Assessment / 53

Respondents took this survey with the promise that their answers
will influence how browser vendors prioritize feature development.
That work is underway.

Google
"The MDN DNA report bridges a critical gap in understanding devel-
oper needs: replacing guesswork with actionable feedback. We will
use it in 2021 to focus our work on improving the areas of the web
platform that cause the most pain. Since the report shows that it's not
just bugs or gaps in key areas, but also interoperability of those areas
across browsers, we will work closely with other browser vendors to
drive improvements across the board."
- Chris Harrelson, Senior Staff Software Engineer and Blink Ren-
dering Lead

Microsoft
The Edge team used the Web DNA survey results from 2019 to
inform their product roadmaps, understand the current needs
of web developers, and to discover unmet needs. This has been a
valuable data point for their platform, apps, and tools teams to
direct planning and inform customer research. The results under-
scored the importance of improving compatibility solutions and
understanding new tooling opportunities, while reinforcing the
general principles behind their choice to move Microsoft Edge to
Chromium, collaborate in open source, and ship across platforms.
They’re eagerly digging into the 2020 results and look forward to
continuing to improve their plans based on this year’s data.

Mozilla
“The MDN DNA report provides the Web Platform team at Mozilla
with critical insight into how we can improve the platform for authors.
The results of the survey highlight the importance of cross-browser
compatibility, an area which we regard as critical for the health of
the web. We will use the survey data to inform the 2021 planning for

Gecko, Firefox’s rendering engine, and help us focus our efforts on
those areas which will have the biggest impact on web developers.”
-Andrew Overholt, Senior Director of Engineering, Web Platform

Conclusion

Methodology

MDN Web Developer Needs Assessment / 55

MaxDiff

This year, we took a more thorough data analysis approach by em-
ploying data science best practices. This includes:

• Using Python to code, clean, and visualize the data
• Employing the Choice-Based Conjoint/Hierarchical Bayes

(CBC/HB) standalone estimation module from Sawtooth
Software to estimate MaxDiff utilities

• Eliminating inconsistencies, e.g., in different sets, a respon-
dent may see ‘Determining the root cause of a bug’ and ‘Dis-
covering bugs not caught during testing.’ In one set, they
may indicate that ‘Determining the root cause of a bug’ is
more frustrating; in a different set, they switched the order.
After HB estimation, we utilize a statistic called Root Like-
lihood (RLH) to determine cutoffs for inconsistent/random
responders, using a set of simulated random data to help
determine the proper cutoff. Respondents failing to exceed
the minimum RLH are removed from further analysis.

• Eliminating speeders, respondents who move through the
survey in an impossibly short amount of time. We calcu-
late the time of completion and drop anybody who is < ½
the median completion time, AND who also have an RLH <
0.5 (RLH ranges from 0 to 1, 1 being better). So in addition
to the inconsistent responders removed above, we remove
speeders who fail to meet a higher consistency threshold as
well. We don’t remove speeders who are consistent in their
answers, in other words.

Needs Segmentation

To uncover the segments, we utilized four different unsupervised
machine learning techniques (kmeans, hierarchical clustering, Ar-
chetype analysis, and k-prototypes), and evaluated multiple possible
solutions with differing numbers of segments (over 40 solutions
evaluated overall).

For each technique, we evaluated the candidate solutions using vari-
ous statistical criteria, choosing a best candidate for each of the four
approaches. These solutions were then profiled and evaluated more
artistically on which told a better story. The solution we settled on
and included in this report comes from a k-prototypes model with 7
clusters or segments.

Methodology

